959 research outputs found

    Cognitive Components of Regularity Processing in the Auditory Domain

    Get PDF
    BACKGROUND: Music-syntactic irregularities often co-occur with the processing of physical irregularities. In this study we constructed chord-sequences such that perceived differences in the cognitive processing between regular and irregular chords could not be due to the sensory processing of acoustic factors like pitch repetition or pitch commonality (the major component of 'sensory dissonance'). METHODOLOGY/PRINCIPAL FINDINGS: Two groups of subjects (musicians and nonmusicians) were investigated with electroencephalography (EEG). Irregular chords elicited an early right anterior negativity (ERAN) in the event-related brain potentials (ERPs). The ERAN had a latency of around 180 ms after the onset of the music-syntactically irregular chords, and had maximum amplitude values over right anterior electrode sites. CONCLUSIONS/SIGNIFICANCE: Because irregular chords were hardly detectable based on acoustical factors (such as pitch repetition and sensory dissonance), this ERAN effect reflects for the most part cognitive (not sensory) components of regularity-based, music-syntactic processing. Our study represents a methodological advance compared to previous ERP-studies investigating the neural processing of music-syntactically irregular chords

    Bach speaks: A cortical "language-network" serves the processing of music

    Get PDF
    The aim of the present study was the investigation of neural correlates of music processing with fMRI. Chord sequences were presented to the participants, infrequently containing unexpected musical events. These events activated the areas of Broca and Wernicke, the superior temporal sulcus, Heschl's gyrus, both planum polare and planum temporale, as well as the anterior superior insular cortices. Some of these brain structures have previously been shown to be involved in music processing, but the cortical network comprising all these structures has up to now been thought to be domain-specific for language processing. To what extent this network might also be activated by the processing of non-linguistic information has remained unknown. The present fMRI-data reveal that the human brain employs this neuronal network also for the processing of musical information, suggesting that the cortical network known to support language processing is less domain-specific than previously believed

    Unpredictability of the “when” influences prediction error processing of the “what” and “where”

    Get PDF
    The capability to establish accurate predictions is an integral part of learning. Whether predictions about different dimensions of a stimulus interact with each other, and whether such an interaction affects learning, has remained elusive. We conducted a statistical learning study with EEG (electroencephalography), where a stream of consecutive sound triplets was presented with deviants that were either: (a) statistical, depending on the triplet ending probability, (b) physical, due to a change in sound location or (c) double deviants, i.e. a combination of the two. We manipulated the predictability of stimulus-onset by using random stimulus-onset asynchronies. Temporal unpredictability due to random onsets reduced the neurophysiological responses to statistical and location deviants, as indexed by the statistical mismatch negativity (sMMN) and the location MMN. Our results demonstrate that the predictability of one stimulus attribute influences the processing of prediction error signals of other stimulus attributes, and thus also learning of those attributes

    Effects of Unexpected Chords and of Performer's Expression on Brain Responses and Electrodermal Activity

    Get PDF
    BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing) and an N5 (reflecting processing of meaning information) in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses). The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function) differed between the expressive and the non-expressive condition. CONCLUSIONS/SIGNIFICANCE: These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music

    Music matters: Preattentive musicality of the human brain

    Get PDF
    During listening to a musical piece, unexpected harmonies may evoke brain responses that are reflected electrically as an early right anterior negativity (ERAN) and a late frontal negativity (N5). In the present study we demonstrate that these components of the event-related potential can be evoked preattentively, that is, even when a musical stimulus is ignored. Both ERAN and N5 differed in amplitude as a function of music-theoretical principles. Participants had no special musical expertise; results thus provide evidence for an automatic processing of musical information in onmusicians.

    Towards a neural basis of music perception

    No full text

    The periodic repolarization dynamics index identifies changes in ventricular repolarization oscillations associated with music-induced emotions

    Get PDF
    The effect of music on cardiovascular dynamics may be useful in a variety of clinical settings. The aim of this study was to assess whether listening to music characterized by different emotional valence affected ventricular periodic repolarization dynamics (PRD), a recently-proposed non-invasive index of sympathetic ventricular modulation. The 12 lead ECG was recorded in 71 healthy volunteers exposed to six 90 s excerpts of pleasant music and unpleasant acoustic stimuli as well as six 90 s intervals of silence. A 20 s interval was allowed between excerpts during which the participants were asked to evaluate the previous excerpt. A simulation study was carried out to assess the capability of the algorithm of tracking fast small changes in PRD. The simulation study shows that the algorithm implemented in this study has a time-frequency resolution sufficient to capture the fast dynamics observed in this study. PRD were higher during listening to both pleasant and unpleasant music than during silence. There was a (weak) trend for the PRD to be higher during listening to pleasant than unpleasant music that may indicate the existence of a (weak) interaction between the valence of music-induced emotions and sympathetic ventricular response. The PRD significantly increased during the 20 s interval in between conditions, possibly reflecting a sympathetic response to the evaluation task and/or to the expectation of the following excerpt

    Pitch discriminiation accuracy in musicians vs nonmusicians: an event-related potential and behavioral study

    Get PDF
    Previously, professional violin players were found to automatically discriminate tiny pitch changes, not discriminable by nonmusicians. The present study addressed the pitch processing accuracy in musicians with expertise in playing a wide selection of instruments (e.g., piano; wind and string instruments). Of specific interest was whether also musicians with such divergent backgrounds have facilitated accuracy in automatic and/or attentive levels of auditory processing. Thirteen professional musicians and 13 nonmusicians were presented with frequent standard sounds and rare deviant sounds (0.8, 2, or 4% higher in frequency). Auditory event-related potentials evoked by these sounds were recorded while first the subjects read a self-chosen book and second they indicated behaviorally the detection of sounds with deviant frequency. Musicians detected the pitch changes faster and more accurately than nonmusicians. The N2b and P3 responses recorded during attentive listening had larger amplitude in musicians than in nonmusicians. Interestingly, the superiority in pitch discrimination accuracy in musicians over nonmusicians was observed not only with the 0.8% but also with the 2% frequency changes. Moreover, also nonmusicians detected quite reliably the smallest pitch changes of 0.8%. However, the mismatch negativity (MMN) and P3a recorded during a reading condition did not differentiate musicians and nonmusicians. These results suggest that musical expertise may exert its effects merely at attentive levels of processing and not necessarily already at the preattentive levels

    Music perception in cochlear implant users: An event-related potential study

    No full text
    Objective : Compare the processing of music-syntactic irregularities and physical oddballs between cochlear implant (CI) users and matched controls. Methods : Musical chord sequences were presented, some of which contained functionally irregular chords, or a chord with an instrumental timbre that deviated from the standard timbre. Results : In both controls and CI users, functionally irregular chords elicited early (around 200 ms) and late (around 500 ms) negative electric brain responses (early right anterior negativity,ERAN and N5). Amplitudes of effects depended on the degree of music-syntactic irregularity in both groups; effects elicited in CI users were distinctly smaller than in controls. Physically deviant chords elicited a timbre- mismatch negativity (MMN) and a P3 in both groups, again with smaller amplitudes in CI users. Conclusions : ERAN and N5 (as well as timbre-MMN and P3), can be elicited in CI users. Although amplitudes of effects were considerably smaller in the CI group, the presence of MMN and ERAN indicates that neural mechanisms of both physical and music- syntactic irregularity-detection were active in this group. q 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserve
    corecore